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1. Introduction

Interesting global information is encoded in the Maxwell-like rank four field G4 of M-theory,

which is written locally as G4 = dC3 where C3 is the so-called C-field. So one concrete aim

in this direction is to understand the nature of this C-field. Another is to understand Hodge

duality that relates G4 to its dual ∗G4 in eleven dimensions. There is an analogous question

in type II string theory where the fields are grouped into a total field strength containing

the fields descending from G4, by dimensional reduction, as well as their (ten-dimensional)

Hodge duals. This package leads to the description in terms of twisted K-theory [1 – 3].

We would like then to ask whether, in analogy to the type II case, we can unify

both field strengths in eleven dimensions, namely the fields G4 and ∗G4. So we seek a

generalized cohomology theory in which the eleven-dimensional fields are unified in the

same way that the Ramond-Ramond fields (in the presence of Neveu-Schwarz fields) are

unified into (twisted) K-theory. Earlier work [4 – 6] with I. Kriz viewed elliptic cohomology

as the right setting for type II string theory. The corresponding picture in M-theory leads

to the question of whether the theory M proposed in [7] is new or whether it happens

to be one of the known generalized cohomology theories. In [8] we proposed a unified

quantization condition on G4 and its dual by viewing the pair as components of the same

total field strength. So the point we look at in the present paper is the possibility that this

total field strength ‘lives’ in some generalized cohomology theory.

One might argue that the problem can be looked at from the complementary picture

of branes. In the same way that one has to talk about branes up to creation of other

branes in type II string theory [9], here we ask whether one can talk about M-branes up

to creation of other M-branes. While the picture is not precisely analogous, one can say

that the existence of the M5-brane automatically requires the existence of the M2-brane,

via the Hanany-Witten mechanism or via the dielectric effect.1

The supermultiplet (gµν , ψµ, C3) of eleven-dimensional supergravity [11] is composed

of the metric, the gravitino and the C-field. Thus, in its standard formulation, the the-

ory is manifestly duality-nonsymmetric. One can then ask about the role of the dual

1This was discussed briefly in [10].
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fields in the theory. One can get a free supersymmetric theory based on the dual 6-index

field C6, but the corresponding interacting theory is not consistent [12]. There is also a

duality-symmetric formulation of eleven-dimensional supergravity [13].2 However, such a

formulation does not seem to accommodate nontrivial topology or fields that are nontrivial

in cohomology. There is also the duality-symmetric formulation of the nongravitational

fields in [17], again assuming G4 = dC3, i.e. the field G4 is trivial in cohomology, [G4] = 0.

We need a degree four ‘Bott generator’ and either a degree seven or a degree eight

gnerator for the dual. Using the rank seven field ∗G4 as the dual field, we find the equations

of motion (henceforth EOM) and the Bianchi identity as components of a unified expression

of the total field strength, using a twisted differential, with the twist now given by the degree

four field G4 instead of H3, in the usual case of type II string theory. Adding the one-loop

term I8 to the EOM serves a priori as an obstruction to having such a twisted cohomology.

However, by absorbing I8 in the definition of the dual field strength one still gets a twisting.

One can ask about the relevance of the E8 gauge theory. We know that the degree four

field G4 is intimately related to E8, at least topologically [18]. What we are advocating is

that there two ways of looking at the problem, one via E8, and another via some generalized

cohomology theory. But then adding the dual fields, one seems to break that connection,

and in this case it seems possible to only look for a generalized cohomology interpretation,

as the homotopy type of E8 does not allow for a direct interpretation of the dual field(s).

So we argue for two points of view regarding the fields. The first is the bundle picture

in which only the lower-rank fields ‘electric’ fields are described, e.g. G4 in M-theory via

E8, F2 in type IIA via the M-theory S1-bundle. The second is the generalized cohomology

picture where the field strengths and their duals are grouped into one total field strength

that lives in the corresponding generalized cohomology theory, e.g. twisted K-theory for

type II. Thus taking the second point of view, the aim of this paper is to argue for a

generalized cohomology theory for the case of the M-theory field strength G4 and its dual.

Such a unification was already started in [8] where the class of G4 and the dual class

Θ (realizing the r.h.s. of the EOM) were given a unified expression that reflected their

quantization laws. The existence of the corresponding generalized cohomology theory was

proposed in [7] and further properties were given in [8].

2. The total field strength

First note that, unlike the RR fields which have mod 2 periodicity, the fields of M-theory

do not enjoy such a periodicity. This is obvious because one of the fields has even rank

and the other has odd rank. Besides there are only two of them. One can ask first whether

there is a Bott element of dimension three (= the difference of the two ranks) that can

take the role which the usual Bott element played in type II. The answer is negative and

there is no such element in the class of theories descending directly from MU . So one

can then ask whether there is another way to form a total M-theory field strength with a

uniform degree. One is then forced to use more than one element to do the job. Again

2For ten-dimensional supergravity theories, this was dicussed in [14, 15] and [16].

– 2 –



J
H
E
P
0
6
(
2
0
0
6
)
0
6
2

there is no element of odd degree, so in order to be able to say something useful, one seeks

a modification of the point of view in which even degree fields are included. But what

exactly should we do? Two things come to mind. First we can try to lift to the bounding

twelve dimensional theory defined on Z12 with ∂Z12 = Y 11. Here, one possibility is then

to look at the four/eight combination G(12) = G4 + ∗12G4 in twelve dimensions. Then the

arguments that hold for G4 +d∗11 G4 in eleven dimensions hold for G(12) as well.3 Second,

we can work with an eight-form in eleven dimensions, that we view as the dual field instead

of the seven form. On the other hand, if we insist on working with odd forms, then this

seems to suggest some deformation of cohomology rings which involves odd generators.

We are looking for a generator of degree four that makes a degree zero form when

multiplied with G4. Since dimvn = 2pn − 2, there is only one generator of degree four,

which the first generator at p = 3. What theory is a good candidate theory to include this

generator? It is possible that this is either of the first Morava K-theories at p = 3, i.e.

either K̃(1) or K(1) with coefficient rings K̃(1)∗ = Z[v1, v
−1
1 ], and K(1)∗ = Z/3[v1, v

−1
1 ],

respectively. We can then form the desired class4

(v1,p=3)
−1G4. (2.1)

As in the case for G4 we are looking for a generator whose degree is the same as the

degree of the field, and which is inverted so that its inverse can be used to write down

a uniform degree zero field. So here we need a degree eight generator. Now we would

like to find an expression of total degree zero for the total M-theory field strength. The

desired generator is the square of v1,p=3, which has total dimension 4+ 4 = 8. So with this

possibility, we can write the following expression for the uniform total field strength5

G = (v1,p=3)
−1G4 + (v1,p=3)

−2G8. (2.2)

With this, we are using the same generator for the whole expression, which is the case

analogous to the type II situation, One possibility that that we are then dealing with the

p = 3 first (integral) Morava K-theory. One can ask whether the problem can be looked

at without specializing to a particular prime. The theory of Topological Modular Forms,

tmf , has an interesting feature that it is not localized at a given prime, i.e. is not local

and unifies all primes – see [6] for a discussion on the relevance of TMF from a different

but related point of view. This is attractive, and seems to be what a theory like M-theory

should be doing. Besides, this might make sense since the vector bundles (or their ‘higher-

degree’ analogs) are real, and TMF is a real theory — it is to elliptic cohomology E as

KO-theory is to K-theory. One can ask whether there are degree four and degree eight

generators in tmf , which can be used for the total field strength. Indeed there are such

generators, which were used in [6].

As far as dynamics goes, it does not make much sense to talk about ∗G4 or d ∗ G4

alone, because their dynamics involve G4 (cf. the EOM of G4). So in order to include the

3Throughout the paper, if the Hodge star operator has no explicit dimension label then it refers to the

eleven-dimensional one.
4In writing this expression and all the analogous ones, we are implicitly tensoring with R (or Q).
5This is meant to be analogous to the uniform degree zero expressions of the RR field strengths in [20].
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dual picture, one can at best look for a duality-symmetric formulation of the character, i.e.

as opposed to a dual description. If we use the eight-form d ∗ G4 as the ‘dual’ form, then

the corresponding exponential is

eG4+d∗G4 . (2.3)

We ask the question whether from this we can get the EOM and the Bianchi identity. By

looking at the degrees of the forms, we see that while we can get the Bianchi identity by

looking at the degree five component, i.e.
[
d

(
eG4+d∗G4

)]
(5)

, (2.4)

we cannot get the EOM, simply because the degrees of forms would not match.6

One can then ask whether the exponential (2.3) can be looked at in some other way

that would give the EOM and Bianchi. While the EOM can be obtained by some ‘flatness

condition’ on the character, i.e.
[
eG4+d∗G4

]
(8)

= 0, (2.5)

the Bianchi identity does not follow. One instead gets a flatness condition on G4 as well if

one were to look at the degree four component of the expression (2.5). Even though one

can say we got both the EOM and the Bianchi identity, we actually did not do that by

using the same expression, and this is obviously not satisfactory. This seems to indicate

that while the quantization conditions on the forms [8] favors the four/eight combination,

the dynamics favors instead the four/seven combinations of field strengths.

Let us now look at the effect of including the generators– let us call them v and ṽ —

in (2.3). Doing so results in the expression

[(
ev−1G4+ev−1d∗G4

)]
(8)

=
1

2
v−2G4 ∧ G4 + ṽ−1d ∗ G4. (2.6)

So requiring that we get the EOM via factoring out the generators leads to the obvious

condition that7

v2 = ṽ. (2.7)

Naturally, we would like to see whether such a condition can occur in the generalized

cohomology theories that we consider in this paper. We check the dimensions of the

generators. Since in general that dimension at ‘level’ n and prime p is dim vn = 2(pn − 1),

we then need to satisfy the equality

[2(pn
− 1)]2 = 2(pm

− 1), (2.8)

where m > n. Even though such an expression is not expected to have many solutions in

general, it is still more general than we want.

6unless the differential does not act on the exponential, which is not what is meant to happen.
7It is interesting that if we interpret v and ev as the generators introduced in [17] and used in the next

section, then the corresponding statement would be {v, v} = −ev, i.e. one of the relations of the gauge

algebra for G4 and ∗G4. The minus sign would then make (2.6) equal to (d + G)2, the obstruction to

nilpotency.
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It might be desirable to require that the total expression on the r.h.s. of (2.6) have

degree zero. It turns out that this is not possible within the current context, and the next

best thing is to require the first generator v to have degree four.8 This then implies, via

2(pn − 1) = 4, that p = 3 and n = 1. Of course the equality is then satisfied and the

dimension of ṽ is 16 with m = 2 and the same prime p = 3.

Let us go back and look at what the above implies for the relationship between the

dimensions of the generators and the dimensions of the field strengths. In the above we

asked whether the expanded exponential expression has total degree zero. But then going

back to the exponent, we see that it does not have total degree zero, because we have the

generator ṽ, which we found to have dimension sixteen, multiplying d ∗G4 which has rank

eight as a form or a class. However, it is still true that the G4 part has degree zero. What

we learn from this is that what matters is for the degrees of the factors to match after

expanding the exponential and not as they stand in the exponent. As mentioned earlier,

generators of degree four and eight can be obtained from tmf (cf. [6]).

3. A twisted (generalized) cohomology?

In this section, we would like to use the degree seven field as the dual field to G4 and thus

take the total field strength to be G = G4 +∗11G4. We would like to use such an expression

(and slight variations on it –see below) as it is duality-symmetric9 in the electric-magnetic

or membrane-fivebrane sense. Then it is interesting that one can write the Bianchi identity

and the EOM of G4, respectively, as the degree five and the degree eight component of the

expression (
d +

1

2
G4 ∧ +

1

2
∗ G4∧

)
G = 0. (3.1)

The ∗G4 ∧ ∗G4 term vanishes because it involves the same form of odd degree. However,

we are left with the degree eleven component,10 i.e. the cross-terms between G4 and ∗G4,

which does not vanish as the two terms add.11

There are several interesting aspects to equation (3.1). First, one can ask whether this

has the form of some twisted structure in analogy to that associated with the RR fields in

type II string theory, where one has for the total field strength F ,

dF = H3 ∧ F. (3.2)

Written as

dH3
F = (d − H3∧)F = 0, (3.3)

8In any case, even without requiring the G4 term to have degree zero, one sees upon inspecting (2.8), at

least for relatively low n, m and p (which are the only relevant), that the result of the discussion does not

change.
9This is meant to be in the sense that the expression contains both G4 and its dual ∗G4, and that it is

invariant under the exchange G4 ↔ ∗G4. It is not meant to be in the sense of exchanging G and ∗G as we

will see explicitly later when the generators of the gauge algebra are included.
10We will take care of this term later.
11since αk ∧ βl = (−)klβl ∧ αk.
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this leads to interpreting d − H3 as the differential in twisted (de Rham) cohomology

H∗(X,H; R), even for type IIA and odd for type IIB [3]. One can easily check that (dH3
)2

is indeed zero [3], which follows from the fact that the twisting field H3 is closed and that

the wedge product of two twisting fields H3 ∧ H3 vanishes just because it is the wedge

product of the same differential form of odd degree.

Going back to (3.1), we ask whether an analogous structure appears. Of course we

have obvious differences from the type II case: what is to be interpreted as a ‘twisting field’,
1
2G, is now part of the total field that is being twisted, namely G.12 The other difference

is that the twist now involves an even rank field, which while it is closed in analogy to

H3, the wedge of two copies of which does not vanish since it is even-dimensional. If we

interpret the combination d+ 1
2G4 + 1

2 ∗G4 as a new differential dG and hope that it forms

a cohomology, then the nilpotency does not seem to be immediately obvious. However, it

turns out that the situation is in fact encouraging. To see this, let us simply calculate the

action of its square on the total field strength,

d2
G G =

(
d +

1

2
G4 ∧ +

1

2
∗ G4∧

)2

G = G4 ∧ dG. (3.4)

This gives two terms both of which vanish. The first one vanished by virtue of the Bianchi

identity and the second vanished because it has degree greater than eleven. Thus,

d2
G G = 0. (3.5)

This is on-shell and is valid when the differential acts on the field strength. In the case

of type II string theory, dH = d + H3 was an actual differential, i.e. d2
H was zero without

necessarily acting on the RR field F . Does this happen in our case of M-theory?

Let us study the question one step at a time. To start, calculating d2
G gives the sum

1

2
G4 ∧ d +

1

2
G4 ∧ d, (3.6)

i.e. G4 ∧ d. Obviously this is not zero, and so we need to modify the differential in order to

have any hope at nilpotency. The problem can be traced back to the fact that G4 has an

even degree and so moving the differetnial over it does not pick a minus sign that would

then cancel the other factor. Explicitly, the square gives the cross terms d(G4∧) + G4 ∧ d,

which when expanded gives dG4 ∧ +G4 ∧ d + G4 ∧ d. The first term disappears because

of the Bianchi identity but the second adds to the third (instead of subtracting had G4

been of odd degree). Thus the problem does not arise for ∗G4. Note that at this stage we

can see that the somewhat artificial factor of half inside the differential does not seem to

matter. We will see that this is indeed the case later.

In order to get the two terms above to subtract instead of add, we need some form of

grading. For that purpose, let us use the duality-symmetric total field strength introduced

in [17],

G = vG4 + ṽ ∗ G4, (3.7)

12In order to make the equations and the statement symmetric, one might try to rescale and use both the

total field strength and the twist as 1√
2
G. However, the equation of motion would then have an anomalous

relative factor of
√

2.
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and check whether this G can be used as a twist to form the desired differetial. As the

problem above was due to the sign in the Leibnitz rule, let us consider the corresponding

rule for G. Due to the nature of v and ṽ [17], this is

d(G∧) = dG ∧ − G ∧ d. (3.8)

Then using this Leibnitz rule to expand the expression

(d ± G)2 = d2
± d(G∧) ± G ∧ d + G ∧ G (3.9)

gives

(d ± G)2 = ±dG + G ∧ G. (3.10)

Now which sign to pick is determined simply by the vanishing of the right hand side. This

happens for the minus sign13 because then the right hand side would be

dG − G ∧ G, (3.11)

which is zero as it is just the negative of the unified equation giving the EOM and the

Bianchi identity derived in [17]. Then, d − G is indeed a differential, which we will denote

by dG . At this point we can try to look for slight variations of this differential.

• Scaling : From the expression

(d + nG)2 = −ndG + n2
G ∧ G (3.12)

we see that the constant n can only be equal to one in order for the unified equation

of motion to be satisfied.

• Duality : We can derive the Leibnitz rule for the dual field ∗G,

d(∗G∧) = d(∗G) ∧ + ∗ G ∧ d, (3.13)

which we use to show that

(d ± n ∗ G)2 = ±nd ∗ G ∧ ± n ∗ G ∧ d ± n ∗ G ∧ d + n2 ∗ G ∧ ∗G. (3.14)

It is obvious then that (d±n∗G) is not a differetial since the terms ±n∗G∧d in (3.14)

add, giving a result that cannot be zero without acting in a particular way on other

forms.

So does this mean we have twisted cohomology? This suggests that one gets such a

structure if one uses the rank seven field ∗11G4 as the dual field of the M-theory rank four

field G4. At the level of differential forms, the differential dG is then interpreted as a map

dG : Ωm ⊕ Ωm−3 −→ Ωm+1 ⊕ Ωm−2, (3.15)

13One way this minus sign can be motivated is by saying it gives the differential d−H in type IIA upon

reduction (at least of the G4-part of G.
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our case being m = 7 of course. Such differentials (with one twist) were encountered in [21].

One can also form a differential of uniform degree by introducing a formal parameter t of

degree −3 and write14 dG4
= d + tG4 + t2 ∗ G4. The interpretation of t as a periodicity

generator is desirable but is not very transparent again because it is of odd degree. This

shift from even to odd degrees can be obtained by suspension or by looping (see below for

relevance).

Furthermore, we would like to interpret the above result at the level of twisted cohomol-

ogy as the target via a generalized Chern character of some twisted generalized cohomology

theory M(•, G) or τM, where τ is [G], the class of G, i.e.

chG : M(•, G) −→ H4k(•, G). (3.16)

Note that elliptic cohomology theory can be thought of, at least heuristically, as the

K-theory on the loop space, i.e. the elliptic cohomology of a space X is the K-theory of LX.

The twists of K-theory are given by its automorphism. This includes H3(X; Z). Applying

this to the loop space gives the automorphism of elliptic cohomology, by which one can

twist.15 By transgression, H3(LX; Z) gives H4(X; Z). For the d ∗ G4 part, we expect the

arguement to be analogous. The H8-twist in M-theory would descend to H7-twist in string

theory.16

3.1 Including the one-loop term

The EOM after including the one-loop term (first introduced in [22]) is modified to

d ∗ G4 = −
1

2
G4 ∧ G4 + I8, (3.17)

where I8 = −
p2−(p1/2)2

48 is the purely gravitational term, a polynomial in the Pontrjagin

classes of the tangent bundle of the eleven dimensional spacetime Y 11.

We can still group together G4 and its dual in the presence of I8. For the degree

four/eight combination we simply add I8 to d ∗ G4 and we are dealing with precisely the

Θ-class studied in [19] and [8]. For the case of the degree four/seven combination, we can

use the fact that I8 = dX7 where X7 is the transgression polynomial for I8 in degree seven,

and write the expressions using ∗G4 + X7. For example,

(
d +

1

2
G4

)
[G4 + (∗G4 + X7)] , (3.18)

with the degree five and degree eight pieces giving respectively the Bianchi identity and

the EOM upon using dX7 = I8. Other formulae follow as well. We can see that when we

add I8 to the picture, it serves as an obstruction to having a twisted theory. However, if

we absorb it in the defintion of the dual field as above, then we would still get a twist.

14We are oversimplifying as we also have to include v and ev. We hope to discuss this elsewhere.
15We thank Constantin Teleman for explanations concerning this point.
16We hope to discuss this in detail elsewhere.
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Note added. A lot of work remains to be done, in giving a precise construction to the

general ideas and outline presented in this note, as well as taking the structures off-shell,

where they really should be.
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